1. 首页
  2. 开发者
  3. 机器学习

CNN–两个Loss层计算的数值问题

     写在前面,这篇文章的原创性比较差,因为里面聊的已经是老生长谈的事情,但是为了保持对CNN问题的完整性,还是把它单独拿出来写一篇了。已经知道的童鞋可以忽略,没看过的童鞋可以来瞧瞧。

     这次我们来聊一聊在计算Loss部分是可能出现的一些小问题以及现在的解决方法。其实也是仔细阅读下Caffe代码中有关Softmax loss和sigmoid cross entropy loss两个部分的真实计算方法。

Softmax

     有关Softmax的起源以及深层含义这里不多说了,我们直接来看看从定义出发的计算方法:

def naive_softmax(x):     y = np.exp(x)     return y / np.sum(y) 

     随便生成一组数据,计算一下:

a = np.random.rand(10) print a print naive_softmax(a)  [ 0.67362493  0.20352691  0.02024274  0.29988184  0.2319521              0.43930833  0.98219225  0.54569955  0.00298489  0.83399241] [ 0.12203807  0.07626659  0.06349434  0.08398094  0.07846559      0.09654569  0.16615155  0.10738362  0.06240797  0.14326563] 

     从结果来看比较正常,符合预期,但是如果我们的输入不那么正常呢?

b = np.random.rand(10) * 1000 print b print naive_softmax(b)  [ 497.46732916  227.75385779  537.82669096  787.54950048  663.13861524   224.69389572  958.39441314  139.09633232  381.35034548  604.08586655] [  0.   0.   0.  nan   0.   0.  nan   0.   0.   0.] 

     我们发现数值溢出了,因为指数函数是一个很容易让数值爆炸的函数,那么输入大概到多少会溢出呢?蛋疼的我还是做了一个实验:

np.exp(709) 8.2184074615549724e+307 

     这是在python能够正常输出的单一数字的极限了。实际上这接近double类型的数值极限了。

     虽然我们前面讲过有一些方法可以控制住数字,使输出不会那么大,但是终究难免会有个别大数字使得计算溢出。而且实际场景中计算softmax的向量维度可能会比较大,大家累积起来的数字有时还是挺吓人的。

     那么如何解决呢?我们只要给每个数字除以一个大数,保证它不溢出,问题不就解决了?老司机给出的方案是找出输入数据中最大的数,然后除以e的最大数次幂,相当于下面的代码:

def high_level_softmax(x):     max_val = np.max(x)     x -= max_val     return naive_softmax(x) 

     这样一来,之前的问题就解决了,数值不再溢出了。

b = np.random.rand(10) * 1000 print b print high_level_softmax(b)  [ 903.27437996  260.68316085   22.31677464  544.80611744  506.26848644   698.38019158  833.72024087  200.55675076  924.07740602  909.39841128]  [  9.23337324e-010   7.79004225e-289   0.00000000e+000       1.92562645e-165   3.53094986e-182   9.57072864e-099       5.73299537e-040   6.01134555e-315   9.99999577e-001       4.21690097e-007] 

     虽然不溢出了,但是这个结果看着还是有点怪。上面的例子中最大的数字924.07740602的结果高达0.99999,而其他一众数字经过softmax之后都小的可怜,小到我们用肉眼无法从坐标轴上把它们区分出来,这说明softmax的最终结果和scale有很大的关系。

     为了让这些小的可怜的数字不那么可怜,使用一点平滑的小技巧还是很有必要的,于是代码又变成:

def practical_softmax(x):     max_val = np.max(x)     x -= max_val     y = np.exp(x)     y[y < 1e-20] = 1e-20     return y / np.sum(y) 

     结果变成了:

[  9.23337325e-10   9.99999577e-21   9.99999577e-21   9.99999577e-21    9.99999577e-21   9.99999577e-21   9.99999577e-21   9.99999577e-21    9.99999577e-01   4.21690096e-07] 

     看上去比上面的还是要好一些,虽然不能扭转一家独大的局面。

Sigmoid Cross Entropy Loss

     从上面的例子我们可以看出,exp这个函数实在是有毒。下面又轮到另外一个中毒专业户sigmoid出厂了。这里我们同样不解释算法原理,直接出代码:

 1/2     1  2  下一页  尾页     

除特别注明外,本站所有文章均为 人工智能学习网 原创,转载请注明出处来自CNN–两个Loss层计算的数值问题

人喜欢 分享到微博 分享到朋友圈 CNN--两个Loss层计算的数值问题 打开微信,点击底部的“发现”,使用“扫一扫”即可将网页分享至朋友圈。 更多分享

上一篇 Caffe代码阅读——Solver 下一篇 返回列表 CNN--两个Loss层计算的数值问题

发布者: aihot,转转请注明出处:http://www.aiwuyun.net/archives/3899.html

发表评论

登录后才能评论

联系我们

在线咨询:点击这里给我发消息

邮件:admin@aiwuyun.net

工作时间:周一至周五,9:30-18:30,节假日休息